优秀的编程知识分享平台

网站首页 > 技术文章 正文

自动控制原理PID算法示例理解

nanyue 2024-12-07 15:48:56 技术文章 7 ℃

PID算法比例积分微分作用介绍

1.1 比例控制器

1.1.1 比例控制器开环传递函数

比例(P)控制:此时开环传递函数为:

1.1.2 比例控制器根轨迹Matlab代码

Kp=1; den=[1 2 0]; g1=tf(1,den); rlocus(g1); grid on

1.1.3 Matlab代码运行结果

1. 开环传递函数:

2. 比例控制器作用系统的根轨迹

1.1.4 小结

根轨迹如图(1)所示,系统的极点都在右半平面,系统是稳定的。

1.2 比例微分控制器

1.2.1 比例微分控制器开环传递函数

比例(PD)控制:此时开环传递函数为:

1.2.2 比例控制器根轨迹Matlab代码

figure; g2=tf([1 4],den); rlocus(g2); grid on

1.2.3 Matlab代码运行结果

1. 开环传递函数:

2. 比例控制器作用系统的根轨迹

1.2.4 小结

根轨迹如图(2)所示,由于根轨迹向左偏移,系统的动态性能得以有效改善。

1.3 比例积分控制器

1.3.1 比例积分控制器开环传递函数

比例(PI)控制:此时开环传递函数为:

1.3.2 比例积分控制器根轨迹Matlab代码

figure; g3=tf([1 1.5],conv(den,[1 0])); rlocus(g3); grid on

1.3.3 Matlab代码运行结果

1. 开环传递函数:

2. 比例控制器作用系统的根轨迹

1.3.4 小结

根轨迹如图(3)所示,系统从I型变为II型,稳态误差减小,但是引入了积分环节,系统动态性能变差。

1.4 比例积分微分控制器

1.4.1 比例积分微分控制器开环传递函数

比例(PID)控制:此时开环传递函数为:

1.4.2 PID控制器根轨迹Matlab代码

figure; g4=tf([0.25 1 1.5],conv(den,[1 0])); rlocus(g4); grid on

1.4.3 Matlab代码运行结果

1. 开环传递函数:

2. 比例控制器作用系统的根轨迹

1.4.4 小结

根轨迹如图(4)所示可以看出,PID控制综合了微分控制和积分控制的优点,既能改善系统的动态 性能,又保留了II型系统的稳定性能。所以适当选择K p、K i、K d可以有效改善系统性能。

最近发表
标签列表